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Abstract. Analytical expressions are developed for estimating column density near a rapidly evaporating droplet along 

general paths.  The influence for instantaneous evaporation is created first as a limiting case, where the peak value occurs 

at the time it takes a wave of vapor to reach the closest point along the optical path traveling at its most probable thermal 

speed.  Next the case for finite-period evaporation is evaluated for constant conditions.  Compared to the instantaneous 

case, peak column density occurs shortly after droplet extinction at a lower intensity.  A new mathematical function is 

discovered that solves the integrals associated with this case.  Finally, ways to account for droplet motion and changes in 

evaporation rate with size and temperature are discussed. 
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INTRODUCTION 

Plans call for a NASA robotic refueling mission experiment on board the International Space Station (ISS) to 

repeatedly transfer a simulated cryogenic propellant between two dewars (Fluid Transfer Module, FTM).  After each 

metered transfer, it is planned to vent that cryogen overboard via sublimation or evaporation.  ISS payload providers 

must conduct analyses to demonstrate that any planned gaseous venting generate no more than a certain level of 

material that may interfere with optical measurements from other payloads that may be located nearby [1].  This 

requirement is expressed in terms of a critical maximum column number density ( critCND or crit ), with units of 

molecules/m2.  For the FTM venting process, it is likely that fluid droplets will accompany any such vapor. 

Earlier related studies led to development of analytical expressions for along general paths for a number of 

practical cases under steady conditions, including droplet evaporation [2].  These assumptions are violated for rapid 

evaporation of small droplets however, since they cannot sustain mass flow rates consistent with steady conditions.  

In this work, analytical expressions are developed for estimating column density near a rapidly evaporating 

droplet along general paths.  The influence for instantaneous evaporation is created first as a useful limiting case, 

where it is found the peak value occurs at the time it takes a wave of vapor to reach the closest point along the 

optical path traveling at its most probable thermal speed. 

Next, a finite-period, constant-temperature evaporation case is evaluated.  Compared to the instantaneous case, 

peak column density occurs shortly after droplet extinction, but at a lower intensity.  A new mathematical function is 

discovered that solves the integrals associated with this case [3,4]. Finally, ways to account for droplet motion and 

changes in evaporation rate with size and temperature are discussed in this framework. 

 

MODEL DEVELOPMENT 

Instantaneous Evaporation 
 

To describe gas being liberated from a point source with no directional constraints and no bulk velocity, this 

study uses a spherically-symmetric solution of the collisionless Boltzmann equation developed by Narasimha [5,6].  

For the transient spatial evolution of number density n in response to an instantaneous release of N molecules, 
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Since the problem is spherically-symmetric, distance from the droplet center is given by radius r.  Elapsed time is 

denoted by t, and parameter  is the inverse of the most probable thermal speed 2 R T [7], where R is the species-

specific gas constant and T represents the droplet temperature. 

 

Column number density  is given by the integrated effect of the vapor density intensity along some free path l: 
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where a general path from some initial location 
0

r  to the droplet source is depicted in Fig. 1 below. 

 

 

Figure 1.  Geometry for evaluating  due to a radial point source. 

In Fig. 1, the distance 
0

r between the source and the path origin is fixed, as well as the path direction indicated 

by angle , while r and l vary along the path.  When substituting Eq. (1) into Eq. (2), one notes the only portion that 

is a function of l is contained in the exponential factor.  Let 
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Applying the Law of Cosines to relate r to l, Eq. (2) becomes 
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After some manipulation, one finds 
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Right-Angle & Radial Paths 

 

The solution for a radial path occurs when  = , and the right-angle path   when  = /2.  In Ref. 2 it was 

found that the maximum column density for any path was twice that of the right-angle path: 
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Eq. (6) may be differentiated to yield the time for peak column density to occur along this maximum path.  The 

result is 
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Equation (7) indicates the peak column density along the path of maximum influence occurs when 0
1  .  As 

defined in Eq. (3), 0
  represents a dimensionless wave velocity associated with thermal speed 1  , which for a 

given species is completely governed by the droplet temperature. 

Assuming a d = 1 mm droplet of methane (8.33×1018 molecules at a liquid density of 0.422 g/cm3) exited an 

FTM burst disk aperture at 150 K and evaporated instantaneously, column density levels for a radial path originating 

one meter away from the droplet’s erstwhile position and the maximum influence path along (-∞, ∞) passing 1 m 

from that same position are presented in Fig. 2. 
 

 

Figure 2.  Transient column density, instantaneous evaporation of a d = 1 mm CH4 droplet, T = 150 K. 
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For the maximum path, a peak value of peak
 = 9.75×1017 molecules/m2 is found at t = 0

 r = 2.53 ms.  As time 

increases, 2
1  t .  For the path extending radially outward from 

0
r  = 1 m, the peak value is slightly lower, at 

2.0×1017 molecules/m2, and occurs slightly later, at 3.0 ms. 

 

 
General Peak Influence Condition 

 

Differentiating Eq. (5) with respect to time produces the following condition for the peak column density 

influence along a general path for /2 <   < : 
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The radial path case ( = ) simplifies to  
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While the maximum path peak condition occurs when 0
1  , Eq. (9) satisfies the radial path case when 

0
0.8420  .  This behavior is reflected in Fig. 2 since 0

1 t  

 

Finite Evaporation Period 
 

The instantaneous evaporation limit should be considered a conservative approximation that produces worst-case 

peak values, but may underpredict the time to decay to some value if the peak violates the ISS constraint.  In such 

cases it will be useful to describe the column density produced by a droplet that evaporates over a finite period. 

For a rate that varies over time, one could approximate such behavior with a succession of discretized cases of 

instantaneous evaporation, each impulse representing the portion N of the droplet of N molecules that evolved over 

each time increment t.  For constant-rate evaporation, N = const., and Eq. (1) is replaced by 
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Eq. (10) produces the correct steady limit for Narasimha’s model, 
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With a steady evaporation rate until some final extinction time f
t , n(r, t) may be described by a square wave 

where Eq. (10) becomes the first of two nearly-identical terms, where the second replaces t by f
t t . 

Finding the column density becomes a matter of solving Eq. (2) for these forms.  Since these involve integrating 

over fixed path length l, the different time factors are of no consequence and one may focus attention on the “turned-

on” period ( 
f

t t ). 



Substituting Eq. (10) into Eq. (2), applying the Law of Cosines to relate r to l, and introducing 0
L l r : 
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Right-Angle Case 

 

We shall concentrate attention first on the right-angle path column density ( 2  ) since it is half of the 

maximum influence solution. 
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The integrand in 
I  may be simplified by substituting   ≡ Arctan L.  Referring to Fig. 1, variable is the angle 

made between r and 0
r , and ranges from 0 to /2 as path length l goes from zero to infinity.   
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It turns out a solution for Eq. (14) has not previously been identified.  An approach recently developed by 

Woronowicz [3,4] notes that integrals of the form 
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are solved by a function H() defined by 
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which is the solution of the following differential equation: 
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Applied to Eq. (14), 
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Function H is not particularly well behaved since it becomes unbounded as 2   and rises steeply from zero 

when parameter 0
 is sufficiently large.  However, 0

  (associated with inverse time) acts as a sort of switch that 

causes H to change from H  for small values of 0
  to  2 2

0
exp sec H  for large 0

  and 2  .  Figure 



3 illustrates how rapidly this switching occurs, with crossover characterized by conditions at 10 0
log  = 0, or t = 

0
2r RT . 

 

 
 

Figure 3.  Three-dimensional contour map of  0
,H   . 

 

The conditions studied for instantaneous evaporation in the previous section are revisited in Fig. 4 to observe the 

impact of a finite evaporation period on the transient column density prediction.  In actuality that period depends on 

the temperature-dependent evaporation rate, and that temperature also affects the most probable thermal speed 

(wave velocity 1/), but this detail has been neglected to isolate the impact of evaporation period alone.  

 

 

Figure 4.  Transient column density, evaporation of a d = 1 mm CH4 droplet over 

various periods, path of maximum influence, T = 150 K constant wave velocity. 
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It is evident that the effect of a finite period is to reduce the peak value and to delay it to the end of the 

evaporation period when that time exceeds the peak effect for instantaneous evaporation.  For brief evaporation 

periods, such as the t = 0.001 s run, the peak still occurs somewhat after that associated with the instantaneous 

limiting result, but quicker than simply adding 0.001 s to the time to reach the instantaneous evaporation peak.  For 

all finite period cases considered in Fig. 4, the long term decay essentially settles to instantaneous-like behavior 

within ten evaporation periods, although that evolution takes more time with longer evaporation periods. 

 

 

General Case 

 

Returning to Eq. (12), the angle variable change analogous to the right-angle case becomes 
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producing 

 

 
   

csc
22 2 2 2 21 cos sin tan sin0 0

0 0

0
0

, , ; csc
22




     



 
     

 

    
   

 


N
r t e e d

r
.  (20) 

 

To continue, one recognizes the radial case  =  must be excluded.  Creating a new variable sin   , the 

column density becomes 
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Solution of the integral in Eq. (21) is satisfied by suitable applications of  0
,H   . 

 

 

Acute Path Modification 

 

 
 

Figure 5.  Geometry for   < /2 column density path. 

 

For optical paths l characterized by an acute angle  (Fig. 5),  is given by the maximum path case where 0
r  is 

replaced by 0
sin


r r , minus a general case solution where 0

r  is retained but is replaced by . 
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Variable T, Motion Effects 

 

It has been noted that droplet or crystal temperatures tend to fall somewhat upon vacuum exposure [8].  That 

change affects the evaporation or sublimation rate N as well as the characteristic wave velocity 1/.  The fact that 

these droplets are in motion relative to a fixed optical path will also affect column density.  All these effects may be 

compensated for approximately by defining how 0
r , , and T vary with time relative to the optical path, and employ 

an incremental series of instantaneous releases to assess the overall impact.  Computationally it would be 

straightforward to extend the effect of a single droplet to multiple droplets assuming negligible coupling between 

individual sources [9]. 

 

CONCLUDING REMARKS 

A number of increasingly complex analytical expressions have been developed to assist investigators in 

describing the effect of transient single-droplet evaporation on column density along general paths, particularly for 

the path of maximum influence for a given separation distance between the droplet and the line of sight.  The 

instantaneous evaporation case produces a limiting influence that may be used to quickly bound such effects given 

specific applications. 

 

Moreover, column density solutions for droplets evaporating over finite periods were developed.  This 

exploration lead to discovery of a new mathematical function that solves the integral of influence along the optical 

path.  For such cases, peak values occur shortly after extinction and at reduced values compared to the instantaneous 

case. 

 

Finally, incorporation of further refinements including direct and indirect effects of transient temperature 

variation and motion were briefly discussed. 
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